Publications

The constraints of racialization: How classification and valuation hinder scientific research on human variation

Human biological variation has historically been studied through the lens of racialization. Despite a general shift away from the use of overt racial terminologies, the underlying racialized frameworks used to describe and understand human variation still remain. Even in relatively recent anthropological and biomedical work, we can observe clear manifestations of such racial thinking. This paper shows how classification and valuation are two specific processes which facilitate racialization and hinder attempts to move beyond such frameworks. The bias induced by classification distorts descriptions of phenotypic variation in a way that erroneously portrays European populations as more variable than others. Implicit valuation occurs in tandem with classification and produces narratives of superiority/inferiority for certain phenotypic variants without an objective biological basis. The bias of racialization is a persistent impediment stemming from the inheritance of scientific knowledge developed under explicitly racial paradigms. It is also an internalized cognitive distortion cultivated through socialization in a world where racialization is inescapable. Though undeniably challenging, this does not present an insurmountable barrier, and this bias can be mitigated through the critical evaluation of past work, the active inclusion of marginalized perspectives, and the direct confrontation of institutional structures enforcing racialized paradigms.

Shades of complexity: New perspectives on the evolution and genetic architecture of human skin

Like many highly variable human traits, more than a dozen genes are known to contribute to the full range of skin color. However, the historical bias in favor of genetic studies in European and European-derived populations has blinded us to the magnitude of pigmentation’s complexity. As deliberate efforts are being made to better characterize diverse global populations and new sequencing technologies, better measurement tools, functional assessments, predictive modeling, and ancient DNA analyses become more widely accessible, we are beginning to appreciate how limited our understanding of the genetic bases of human skin color have been. Novel variants in genes not previously linked to pigmentation have been identified and evidence is mounting that there are hundreds more variants yet to be found. Even for genes that have been exhaustively characterized in European populations like MC1R, OCA2, and SLC24A5, research in previously understudied groups is leading to a new appreciation of the degree to which genetic diversity, epistatic interactions, pleiotropy, admixture, global and local adaptation, and cultural practices operate in population-specific ways to shape the genetic architecture of skin color. Furthermore, we are coming to terms with how factors like tanning response and barrier function may also have influenced selection on skin throughout human history. By examining how our knowledge of pigmentation genetics has shifted in the last decade, we can better appreciate how far we have come in understanding human diversity and the still long road ahead for understanding many complex human traits.